Building a Knowledge Base and Intellectual Capacity in Mathematics Education: Promises and Challenges

Jinfa Cai

University of Delaware icai@udel.edu

Reflection 1

Math Education Researcher

First, Cross-national Comparative Studies

Second, Curriculum Studies

Third, Mathematical Exploration

Reflection 3

NSF Program Director

-Elevator talk

- IES and NSF Common Guidelines for Education Research and Development

Longitudinal Investigation of the Effect of Curriculum on Algebra Learning

 (LieCal Project)

$>$ A profile of the intended treatment of algebra in the CMP curriculum with a contrasting profile of the intended treatment of algebra in the non-CMP curricula;
$>$ A profile of classroom experiences that CMP students and teachers have, with a contrasting profile of experiences in nonCMP classrooms; and
\Rightarrow A profile of student performance resulting from the use of the CMP curriculum, with a contrasting profile of student performance resulting from the use of non-CMP curricula.

Research Site

>A Larger Urban School District
>51 schools in the district have students in the middle grades: 27 use CMP and 24 use non-CMP

Research Site (cont.)

$>$ Diverse student population:
-62\% African Americans
-21\% Hispanic,
-12\% white,
-4\% Asian, and
-1\% Native Americans

Profile of Schools

Achievement Level	CMP	Non-CMP
High Achieving	2	2
Average Achieving	3	3
Low Achieving	2	2

A sample problem in CMP curriculum

The graph below shows the numbers of cans of soft drink purchased each hour from school's vending machine in one day (6 means the time from 5:00 to 6:00, 7 represents the time from 6:00 to 7:00, and so on).

a. The graph shows the relationship between two variables. What are the variables?
b. Describe how the number of cans sold changed during the day. Give an explanation for why these changes might have occurred.

Sample problems in a US Non-CMP curriculum

Evaluate algebraic expressions:
(1)Evaluate $16+b$ if $b=25$.
(2)Evaluate $x-y$ if $x=64$ and $y=27$

Identify the solution of an equation :
$9+w=17$; choose one from $7,8,9$

How is variable defined?

- "A variable is a quantity that changes or varies."
(CMP)
- "A variable is a symbol, usually a letter, used to represent a number."
(Non-CMP)

How is equation defined?

- Rather than seeing equations simply as objects to manipulate, students are shown that equations often describe relationships between varying quantities that arise from meaningful, contextualized situations. (CMP)
-"...a sentence that contains an equals sign, $=$ " (Non-CMP)

\% of Problems Involving Linear Equations

Types	1equ	1equ	2equ 2va
of Problems	1va $(x+2=5 x)$	2va $(y=3 x+4)$	$(3 y=x+2) \&$ $(y=5 x+9)$

CMP

$$
\begin{array}{lll}
5.72 & 93.03 & 1.24
\end{array}
$$

Non-CMP
86.19
11.67
2.14

Mathematical Problem Posing

Teaching

${ }^{[1]}$ The Investigations series does not have Grade-6 textbooks.

Content Area	$\begin{aligned} & \text { Chinese } \\ & (\mathrm{n}=131) \end{aligned}$	$\begin{gathered} \text { US } \\ (\mathrm{n}=60) \end{gathered}$
Numbers and Operations	61.07	78.33
Algebra	3.05	18.33
Geometry	2.29	0
Measurement	2.29	0
Data analysis and probability	12.98	3.33
Undetermined	18.32	0

Observations

Background Information

- 50 sixth-grade classrooms
- 4 observations per classroom (2F, 2Sp)
- 2 trained observers (experienced math teachers) did the observations
- 3 reliability checks done during the year

Factor 1: Emphasis on Conceptual Understanding

	Grade 6 CMP:n=100 Non-CMP: $\mathrm{n}=95$	Grade 7 CMP:n=105 Non-CMP: n=103	Grade 8 CMP:n=112; Non-CMP: $n=100$	Total CMP: $\mathrm{n}=317$ Non-CMP: $\mathrm{n}=298$
CMP	$\begin{gathered} \hline 17.99 \\ (4.56) \end{gathered}$	$\begin{gathered} 15.68 \\ (4.34) \end{gathered}$	16.88 (4.65)	16.83 (4.60)
Non-CMP	$\begin{gathered} 12.33 \\ (3.13) \end{gathered}$	$\begin{gathered} 13.60 \\ (3.04) \end{gathered}$	$\begin{gathered} \hline 14.12 \\ (3.71) \end{gathered}$	$\begin{gathered} 13.37 \\ (3.38) \end{gathered}$
T-Test	$P<.0001$.	$P<.0001$.	$P<.0001$.	$p<.0001$.
ANOVA:	$F(3,611)=39.09, p<.0001$.			

Factor 2: Emphasis on Procedural Knowledge

	Grade 6 CMP: $n=100 ;$ Non-CMP: $n=95$	Grade 7 CMP: $n=105 ;$ Non-CMP: $n=103$	Grade 8 CMP: $n=112 ;$ Non-CMP: $n=100$	Total CMP: $n=317$ Non-CMP: $n=298$
	14.70	14.41	15.25	14.80
CMP	(3.66)	(3.72)	(4.18)	(3.88)
	17.16	17.72	18.33	17.75
Non-CMP	(4.41)	(4.12)	(3.97)	(4.18)
T-Test	$P<.0001$.	$P<.0001$.	$P<.0001$.	$p<.0001$.
$\boldsymbol{A N O V A :}$:	$F(3,611)=29.38, p<.0001$			

The cognitive level of the instructional tasks implemented

Instructional tasks were categorized into four increasingly demanding levels of cognition(Stein et al.,1996):
>Memorization;
$>$ Procedures without connections;
$>$ Procedures with connections; and
$>$ Doing mathematics.

- A scaled score is a generic term for a mathematically transformed student raw score on an assessment.

Using scaled scores, rather than raw scores, assessment results can be placed on the same scale even though students responded to different tasks and at different times.

The two-parameter Item Response Theory (IRT) model was used to scale student assessment data.

Achievement Scaled Scores

The two parameters are: An item difficulty index (easy or hard item) and an item discrimination index (how well an item distinguishes lower from higher achievers).

- Using the two-parameter IRT model, student responses were scaled across all forms and three assessment times.

Quantitative Analysis of student achievement data

>Repeated Measures ANOVA >ANCOVA
$>H L M$ Growth Curve Modeling
>HLM Cross-Sectional

Data Source

Data Source

Data Source	$9^{\text {lih }}$ Grade	$\begin{aligned} & 10^{14} \\ & \text { Grade } \end{aligned}$	$\begin{aligned} & 11^{\text {th }} \\ & \text { Grade } \end{aligned}$	$\begin{aligned} & 12^{\text {th }} \\ & \text { Grade } \end{aligned}$
Open-ended tasks			$\sqrt{ }$	$\sqrt{ }$
Multiple choice tasks			\checkmark	\checkmark
State Test Data		\checkmark		
Mathematics Grades	\checkmark	\checkmark	\checkmark	$\sqrt{ }$
Enrollment in Advanced Math Courses			\checkmark	\checkmark
SAT/ACT Registration and Scores			\checkmark	\checkmark

$10^{\text {th }}$ Grade State Test

Covariate(s)

> F-Value

PI-developed $\mathbf{6}^{\text {th }}$ grade MC tasks 5.13*

PI-developed ${ }^{\text {th }}$ grade OE tasks
3.90*
$6^{\text {th }}$ grade State math test scaled score
$7^{\text {th }}$ grade State math test scaled score
$8^{\text {th }}$ grade State math test scaled score

Some Research Findings
 (Cai \& Merlino, 2011)

- A total of 1316 high school students
- Different programs:

285 Non-college preparation mathematics

858 college preparation math (traditional)

173 college preparation math (NSFFunded)

We are interested in learning how you think and feel about mathematics. Please take a few minutes to think about the following questions and write how you truly feel. There are no right or wrong answers.

- If Math were a food, it would be_because \qquad
- If Math were a color, it would be_because \qquad
- If Math were an animal, it would be_because

To show they like mathematics

"Purple is my favorite color. It's my birth stone color plus it brings passionate. That's how I feel about math."
"Math is like steak because math is a full, expansive subject. However, like a steak there are tough bits of gristle scattered throughout obstacles you must work around. The full meal is satisfying, but the process of eating is somewhat unusually strenuous.
"Vegetables are good for you, and so is mathematics for daily things. It is needed in life. Some people like it, and some people don't, but you still need it to live a healthy life."

To show they dislike mathematics

"I would say a mosquito, because whatever you do to try and get away from it, it always comes back. It's annoying because you hate taking math every year, and whatever you try to do to stop it, it always fails.
"It is like gum. You chew gum and use it to freshen up your breath, but in the end, it's worthless and doesn't have any nutrition or vitamins. Math is used in school to determine your intelligence, but there is no need for it later."

Analyses of Responses

- Quantitative Analysis: Holistic scoring (1-5)
1 Point Very Negative
2 points Moderately Negative
3 points Neutral or Ambivalent
4 points Moderately Positive
5 points Very Positive.
- Qualitative Analysis: Reveal what kinds of metaphors students used and why

Figure 2. Percentage Distribution at Each Attitude Level

Background Information in the Ten School Districts in GPSMP (Kramer, Cai, \& Merlino, in press)

$\left.\begin{array}{|c|c|c|c|c|c|}\hline 1 & \text { Sistrict A (PA) } & \text { CMP } & \begin{array}{c}\text { Curriculum } \\ \text { (20 Middle } \\ \text { School) }\end{array} & \begin{array}{c}\text { Approximate } \\ \text { \# of Students } \\ \text { (Middle } \\ \text { School) }\end{array} & \begin{array}{c}\text { Curriculum } \\ \text { (High } \\ \text { School) }\end{array} \\ \hline\end{array} \begin{array}{c}\text { Approximate } \\ \text { \# of Students } \\ \text { (12 High } \\ \text { School) }\end{array}\right)$

Four Factors for "Will to Reform"

- Superintendent support for the reform program;
- Principal support for the reform program;
- Teacher "buy-in" to the reform program;
- Coherence of School District support for the reform program

Gathering a Couple's Data

Video is taken of the couple discussing a topic of contention, such as money, sex, housing, in-laws etc.

An accepted scoring system assigns a specific number (positive or negative) to each statement.

The scores (positive - negative) for the husband (H) and the wife (W) for each turn of speech (t) are plotted as functions of time. It measures the average positivity of each spouse as a function of time (t).

Data Representation: Typical Data for Low Risk Couple

Cumulative "positive-negative" scores for each turn of speech for the husband and wife.

Stable marriage

Examples: affection +4 disgust -3 whining -1 contempt -4

Low Risk Couple

Basic Marriage Types

Observations of couples (RCISS - Rapid Couples Interacting Scoring System) and mathematical model 5 types of marriages:
3 stable: (1) Volatiles, (2)
Validators, (3) Avoiders
2 unstable: (1) Hostiles, (2)
Hostile-Detached

!!! Thank You !!! and Questions!

Jinfa Cai

University of Delaware jcai@udel.edu

