Learning Together Through Collaborative Research: The Case of Proof in Secondary Mathematics

Michelle Cirillo

University of Delaware Department of Mathematical Sciences

Jennifer Reed

Odyssey Charter School Wilmington, DE

MSU Mathematics Education Colloquium November 20, 2019

ARTS & SCIENCES

Research on Proof in School Mathematics

Proof is important – the "guts of mathematics" (Wu, 1996). BUT

- Proof is challenging for teachers to teach (e.g., Knuth, 2002, Cirillo, 2009; 2014).
- Proof is difficult for students to learn (Senk, 1985; McCrone & Martin, 2004).

How well do students write geometry proofs?

Sharon Senk (1985)

UNIVERSITY OF DELAWARD

Senk's Recommendations

We must immediately look for more effective ways to teach proof in geometry. We should:

- Pay special attention to teaching students to <u>start</u> a chain of reasoning;
- Place greater emphasis on <u>the meaning of proof</u> than we do currently; and
- Teach students how, why, and when they can <u>transform</u> <u>a diagram in a proof</u>.

Three Major Difficulties in the Learning of Demonstrative Geometry

Rolland R. Smith (1940)

Three Major Difficulties in the Learning of Demonstrative Geometry

Ry ROLLAND R. SMITH

PART I ANALYSIS OF ERRORS

CHAPTER I. PURPOSE AND METHOD

EFFICIENT and successful teaching of how the experienced teacher has avoided school requires on the part of the teacher much more than a knowledge of the subject matter. The young person who goes college with honors in mathematics is not necessarily a good teacher. Unless he has to know what difficulties pupils will have been forewarned in one way or another, he s likely to resort to the lecture method which his professors have used in college and then find to his surprise that his pupils have learned little. He may have taken courses in which he studied the general laws of learning as applied to pupils of high school age, but even so he will have difficulty in translating his knowledge to fit the specific requirements of the classroom. Part of his training may have been room. One who has taught for many years to observe the work of a highly efficient, will inevitably know more about pupils' successful, and artistic teacher whom he difficulties and the way to remody, minimay try to imitate. He will find, however, mize, and obviate them than one who has that he has not been keen enough to never taught. But unless he has congrasp the meaning and purpose of many sciously put his mind to the study of these of the techniques. Not knowing before difficulties and has sufficient background hand how a group of pupils will react to a to get meaning from the study, he will given situation, he fails to see when and have missed one of the best methods of

demonstrative geometry in the senior high pitfalls by introducing many details of development not necessarily needed in the finished product but indispensable to the learning process. Before he can become into the geometry classroom after leaving adept in preparing a course of study or planning his everyday lessons, he needs with the many component tasks which when integrated fulfill the desired aim. A teacher can plan a skillful development only when he has reached a point where he can predict within reasonable limits what the reactions of a group of pupils will be.

> A teacher eannot sit in an armchair and by reasoning alone tell how pupils will react to the many situations of the class-

"Three Serious Learning Difficulties"

- Lack of familiarity with <u>geometric figures</u>
- Not sensing the meaning of the <u>if-then</u> relationship
- Inadequate understanding of the <u>meaning of</u> proof

Students' Difficulties with Proof in Geometry

 "In summary, we have seen that students are extremely unsuccessful with formal proof in geometry."

(Clements & Battista, 1992)

(Hershkowitz et al., 2002, p. 675)

2 - ACE = 30

vir and provide the second sec

7 Sies el úniro comuno que se puede haar

UNIVERSITY OF DELAWARE

Calls for Additional Research...

 "The mandate to involve students in proving is likely to be met with the development of tools and norms that teachers can use to enable students to prove and to demonstrate that they are indeed proving."

(Herbst, 2002, p. 200)

 "...research is needed to understand the conditions in which teachers work and how those conditions impact the mathematical work that teachers can sustain"

(Herbst, 2006, p. 314)

Timeline of Progress

D

Three Studies

- 2005-2008: Longitudinal Dissertation Study
- 2010-2013: The Geometry Proof Project
- 2015-2020: Proof in Secondary Classrooms: Decomposing a Central Mathematical Practice (i.e., The PISC Project)

STUDY 1: THE CASE OF MATT

Matt

You can't teach somebody how to do a proof....I mean if a student's really gonna do a mathematical proof, you look at the problem and you either see how you do it or you don't.

Textbook Examples

 Reasoning with Properties from Algebra

Writing Reasons

Solve 55z - 3(9z + 12) = -64 and write a reason for each step.

SOLUTION

55z - 3(9z + 12) = -64 55z - 27z - 36 = -64 28z - 36 = -64 28z - 36 = -64 28z = -28 z = -1Division property of equality

Textbook Examples

 Proving Statements about Segments

EXAMPLE 1

Symmetric Property of Segment Congruence

You can prove the Symmetric Property of Segment Congruence as follows.

 $\mathbf{GIVEN} \models \overline{PQ} \cong \overline{XY}$

PROVE $\triangleright \overline{XY} \cong \overline{PQ}$

Statements	1	Reasons
1. $\overline{PQ} \cong \overline{XY}$	-	1. Given
2. $PQ = XY$		2. Definition of congruent segments
3 . $XY = PQ$		3. Symmetric property of equality
$4. \ \overline{XY} \cong \overline{PQ}$		4. Definition of congruent segments

The Case of Matt: Overall Findings

- Despite strong content knowledge and a good teacher prep program, Matt was at a loss for teaching proof beyond show-and-tell.
- Matt wanted to teach "real math," not just show students completed Theorems in the boxes in his textbook.
- Matt's focus shifted from getting through the required theorems to attempting to teach students to prove.

STUDY 2: THE CASE OF MIKE

Mike, High School Geometry Teacher

- 8 years of experience at start of project
- Mathematics and Science background
- Conventional Prentice Hall *Geometry* textbook
- Private boys' school
- Described students as motivated, curious, confident, intelligent, and affluent

Mike Began Proof with Triangle Congruence

20. GIVEN $\triangleright \overline{AB} \perp \overline{AD}, \overline{DE} \perp \overline{AD}, \overline{BC} \cong \overline{EC}$ **PROVE** $\triangleright \triangle ABC \cong \triangle DEC$

VIDEO REMOVED DUE TO HUMAN SUBJECTS' PERMISSIONS

BACK TO MATT FOR A BRIEF MOMENT...

UNIVERSITY OF DELAWARE

Matt – Year 2

- "On Friday the students will begin constructing their own deductive proofs. Unfortunately, there is no good way, in my opinion, to 'teach' proofs. Students simply have to do them – like learning to swim by drowning."
- "Ok, there's only so many of these that I can do with us together. I just kind of, got to keep throwing you in the deep end. Letting you thrash around for awhile. And then throw you a floaty. Haul you back out and then throw you back in. Alright?"

(Cirillo, 2008)

Things I need to know:

- How do I know what steps to write?
- How do I know what order the steps are in?
- Argh! I don't even know where to start!!!
- How big should I make the T?
- What reasons am I allowed to use?
- How many steps do I need to write?

UNIVERSITY OF DELAWARE

What makes teaching proof in geometry so tough?

- Curriculum
- Student Readiness

• What is going on for *students* when we introduce proof?

If there was a shallow end to teaching proof, what would it look like?

STUDY 3: THE PISC PROJECT

UNIVERSITY OF DELAWARE

PISC Project Timeline

SOME CLASSROOM VIDEOS Y1 → Y3 (ACTUALLY Y2, Y4 OF PISC)

Year 1: First Day of Triangle Congruence Proof

What do you notice and wonder?

VIDEO REMOVED DUE TO HUMAN SUBJECTS' PERMISSIONS

Year 1: First Day of Triangle Congruence Proof

What do you notice and wonder?

"I noticed a lot of really great things you guys were doing. You remembered to put your Given information first and to put what you're trying to prove last and for the most part it looked like we had a lot of things in the correct order, but some of you, I feel like just put them there because you knew they had to be there, but you didn't really go through the steps in the correct kind of order. So that's what we're going to work on today."

Year 1: First Day of Triangle Congruence Proof

- No logic
- 52 minutes
- Unsure
 - "They said..."

UNIVERSITY OF DELAWARE

Year 3: First Day of Triangle Congruence Proof

Given: \overline{BD} is the \perp bisector of \overline{AC}

Prove: $\triangle ABD \cong \triangle CBD$

Year 3: First Day of Triangle Congruence Proof

- Presentation of student work
- Modeling how to discuss and critique the reasoning of others

VIDEO REMOVED DUE TO HUMAN SUBJECTS' PERMISSIONS

Year 3: First Day of Triangle Congruence Proof

What do you notice and wonder?

Year 3: First Day of Triangle Congruence Proof

- Confidence in content
- Student input on making the proof better
- Using true logic

UNIVERSITY OF DELAWARE

Given: $\overline{FJ} \parallel \overline{HI}$ \overline{FI} bisects \overline{JH} at G

Prove: \triangle JFG $\cong \triangle$ HIG

 $\Delta JFG \cong \Delta HIG$ $ASA \cong ASA$

Given: $\overline{FJ} \parallel \overline{HI}$ \overline{FI} bisects \overline{JH} at G

Prove: \triangle JFG $\cong \triangle$ HIG

 $\Delta JFG \cong \Delta HIG$ $AAS \cong AAS$

UNIVERSITY OF DELAWARE

Year 3: First Day of Triangle Congruence Proof

- Student presentation
- Various outcomes
- Creating opportunities for students to engage with another's reasoning

VIDEO REMOVED DUE TO HUMAN SUBJECTS' PERMISSIONS

Year 3: First Day of Triangle Congruence Proof

What do you notice and wonder?

Year 3: First Day of Triangle Congruence Proof

- Student-focused
- Various methods to solve
- Teacher discourse moves

PISC Project Timeline

WHAT HAPPENED?

Between Year 1 and 3: What happened?

- Professional Development
 - Student Thinking
 - Summer Camp
 - Lesson Study
 - Debriefing
- Lessons and readings on Teacher Discourse Moves
- Teaching the Lessons
 - Video Recorded
 - Feedback
 - Daily Reflections
- Continuous PD
 - Met as a Group Improved Lessons
 - Control Group

WHAT HAPPENED?

WELCOME! / ABOUT PISC / RELATED WORK / RELATED PUBLICATIONS / PISC RESOURCES / ADVISORY BOARD

Welcome!

The Proof in Secondary Classrooms (PISC) project is a five-year CAREER grant funded by the National Science Foundation (PI: Michelle Cirillo). PISC will develop an intervention to support the teaching and learning of proof in the context of geometry. This study takes as its premise that if we introduce proof, by first teaching students particular sub-goals of proof, such as how to draw a conclusion from a given statement and a definition, then students will be more successful with constructing proofs on their own.

PISC will draw on findings and artifacts from a previous 3-year study, funded by the Knowles Science Teaching Foundation, which considered the challenges of teaching proof in geometry. In this earlier study, classroom and interview data

LINKS

Professor Cirillo's Homepage UD Department of Mathematical Sciences UD Math Education PhD Program UD Homepage

RESEARCH FUNDED BY:

 \mathbf{P}

	Geometry Proof Scaffold: A Pedagogical Framework for Teaching Proof					
	Sub-Goals	Descriptions	Competencies			
	Understanding	This sub-goal highlights the importance of understanding the building blocks of geometry.	 Having accurate "mental pictures" of geometric concepts (i.e., having a concept image) Being able to verbally describe geometric concepts, ideally being fluent with one or more definitions of the concept (i.e., having or developing a concept definition) 			
	Concepts		3) Determining examples and non-examples			
			 Understanding connections between classes of geometric objects, where they overlap, and how they are contained within other classes (i.e., understanding mathematical hierarchy) 			
	Coordinating	This sub-goal highlights the ways in which the mathematics register draws on a range of modalities.	 Translating between language and diagram 			
	Geometric		2) Translating between diagram and symbolic notation			
	Modalities		 Translating between language and symbolic notation 			
		This sub-goal highlights the nature of definitions, their logical structure, how they are written	1) Writing a "good" definition (includes necessary and sufficient properties)			
	Defining		 Knowing definitions are not unique (i.e., geometric objects can have different definitions) 			
		and how they are used.	Understanding how to write and use definitions as biconditionals			
			 Understanding that empirical reasoning can be used to develop a conjecture but that it is not sufficient proof of the conjecture 			
		This sub-goal recognizes that conjecturing is an important	Being able to turn a conjecture into a testable conditional statement.			
	Conjecturing	part of mathematics and proving.	 Seeking out counterexamples to test conjectures and knowing that only one counterexample is needed to disprove a conjecture 			
			4) Understanding that when testing a conjecture, you are testing it for every case so you might begin by writing: "All," "Every, or "For any"			
		This sub-goal presents the idea	1) Understanding what can and cannot be assumed from a diagram			
	Drawing Conclusions	of an open-ended task that leads to conclusions that can be drawn from given statements and/or a diagram.	2) Knowing when and how definitions and/or "Given" information can be used to draw a conclusion from a statement about a mathematical object			
			 Using postulates, definitions, and theorems (or combinations of these) to draw valid conclusions from some given information 			
		This sub-goal recognizes that there are common short sequences of statements and reasons that are used frequently in proofs and that these pieces may appear relatively unchanged from one proof to the next.	 Recognizing a sub-argument as a branch of proof and how it fits into the larger proof 			
1	Common Sub-arguments		(2) Understanding what valid conclusions can be drawn from a given statemen and how those make a sub-argument (i.e., knowing some commonly occurring sub-arguments)			
			3) Understanding how to write a sub-argument using notation and acceptable language (where "acceptable" is typically determined by the teacher)			
		This sub-goal highlights the nature of theorems,	 Interpreting a theorem statement to determine the hypothesis and conclusion and if needed providing an appropriate diagram 			
			2) If applicable, marking a diagram that satisfies the hypothesis of a proof			
			3) Rewriting a theorem written in words in symbols and vice versa			
	Understanding		 Understanding that a theorem is not a theorem until it has been proven 			
	Theorems	how they are written, and how they are used.	 Understanding that one cannot use the conclusions of the theorem itself to prove the conclusions of that theorem (i.e., avoiding circular reasoning) 			
			6) Understanding that theorems are mathematical statements that are only sometimes biconditionals			
			 Understanding the connection between logic and a theorem, for example, how to write the contrapositive of a conditional statement 			
t		This sub-goal highlights the nature of proof, proof structure, and how the laws of logic are applied.	 Understanding that the only way to sanction the truth of a conjecture is through deductive proof (rather than empirical reasoning) 			
	Understanding		 Exploring a pathway for constructing a proof (i.e., the problem solving aspect of proving) 			
	Proof		 Understanding that proofs are constructed using axioms, postulates, definitions, and theorems and that they follow the laws of logic 			
			 Knowing what language is acceptable to use and how to write up a proof 			
			 secognizing that if you prove that something is true for one particular geometric object, then it is true for all of them 			

Decomposing Proof

Show-and-Tell vs. An On-Ramp

Teacher Show-and-Tell

• On-Ramp

The Geometry Proof Scaffold

(i.e., the "GPS")

The Geometry Proof Scaffold

(i.e., the "GPS")

The Geometry Proof Scaffold

(i.e., the "GPS")

UNIVERSITY OF DELAWARE

PISC Research Questions

- How do teachers *introduce* proof in geometry?
- When engaging in lesson study based on introducing proof by first teaching particular subgoals of proof, how do teacher respond to and execute the lesson plans?
- How do students respond to these lessons?
- How do students in the control and experimental groups think about proof and perform on a set of proof tasks?

2016-2019 (Y2 - Y4)

PISC Curriculum

b

Table o	of Contents	St Cardinal.	
-	1 Getting Started in Euclidean Geometry	17 Lesson Plan	
	2 Investigating Geometric Concepts	18 Lesson Plan	2
	3 Developing Definitions	19 Lesson Plan	3
	4 Coordinating Geometric Modalities – Day 1	20 Lesson Plan	4
	5 Coordinating Geometric Modalities – Day 2	21 Lesson Plan	5
	6 Coordinating Geometric Modalities – Day 3	22 Lesson Plan	6
	7 Drawing Conclusions – Day 1	23 Lesson Plan	
-	8 Drawing Conclusions – Day 2	24 Lesson Plan	
-	9 Deductive Structure	25 Lesson Plan	
	10 Proving Simple Theorems	26 Lesson Plan	_
	11 Common Sub-Arguments	27 Lesson Plan	
	12 Hidden Triangles - Day 1	28 Lesson Plan	
	13 Hidden Triangles – Day 2	29 Lesson Plan	
	14 First Triangle Proofs	30 Lesson Plan	
20	15 Conjecturing about Parallelograms – Day 1	31 Lesson Plan	
	16 Conjecturing about Parallelograms – Day 2	32 Lesson Plan	

PISC Curriculum

DID THE TREATMENT WORK?

Core Teachers Item Averages

What is the estimated impact of the PISC curriculum on students' SGT scores?

What is the estimated impact of the PISC curriculum on students' SGT scores (Year 1 vs. Year 3 only)?

HLM Model Parameters	Estimate	Standard Error	P-value
Fixed Effects			
Intercept	6.73	2.39	0.0125
EGT NCE Score	0.44	0.03	<.0001
8 th Grade Indicator	11.20	3.71	0.0026
CORE Treatment	6.61	1.75	0.0002
Random Effects (residuals)			
Teacher	45.22	18.0	0.0060
Student	122.34	6.47	<.0001

After controlling for grade level and EGT scores and restricting analyses to Year 1 and Year 3 data only, students in CORE classes scored 6.61 NCE points higher (ES = +.31 standard deviations) on the SGT (p<.001).

Gains made by students were significantly larger in classrooms using the PISC curriculum.

UNIVERSITY OF DELAWARE

Michelle's Reflections

- "Collaboration between researchers and school personnel provides integrated perspectives for addressing critical issues in mathematics teaching and learning" (NCTM, 2012, p. 1).
- Impact of Attending to Student Thinking
- Cannot do this kind of work alone or on campus

Jen's Reflections

- Well worth the time and effort
- Confidence in content
- Better teaching overall

UNIVERSITY OF DELAWARE

Thank you!

This material is based upon work supported by the National Science Foundation (NSF; Award #1453493, PI: Michelle Cirillo). Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the NSF.

Gratitude to Jen Hummer, Amanda Seiwell, Kelly Curtis, many undergraduate students, and the project teachers.

Email mcirillo@udel.edu for questions

about or visit www.pisc.udel.edu

for updates on the project.

